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Abstract. Air pollutants and greenhouse gases have many effects on health, the economy, urban climate and 
atmospheric environment. At the city level, the transport and heating sectors contribute significantly to air 
pollution. In order to quantify the impact of urban policies on anthropogenic air pollutants, the main processes 15 
leading to emissions need to be understood: they principally include mobility for work and leisure as well as 
household behavior, themselves impacted by a variety of social parameters. 
In this context, the Olympus modeling platform has been designed for environmental decision support. It generates 
a synthetic population of individuals and defines the mobility of each individual in the city through an activity-
based approach of travel demand. The model then spatializes road traffic by taking into account congestion on the 20 
road network. It also includes a module that estimates the energy demand of the territory by calculating the unit 
energy consumption of households and the tertiary sector. Finally, the emissions associated with all the modeled 
activities are calculated using the COPERT emission factors for the traffic, and the European Environmental 
Agency (EEA) methodology for heating-related combustions. The comparison of emissions with AIRPARIF's 
regional inventory shows discrepancies that are consistent with differences in assumptions and input data, mainly 25 
in the sense of underestimation. The methodological choices, as well as the potential ways of improvement, 
including the refinement of traffic congestion modeling and of the transport of goods, are discussed. 

1 Introduction  

As the world population is rising, the share of the population living in urban areas is increasing (United Nations, 
2014). These areas can be described as activity clusters supporting a substantial density of individuals, buildings, 30 
transport networks and job centers. All of the human activities inherent in these metropolises induce a major local 
consumption of fossil energy and natural resources, favoring the concentration of a great variety of nuisances 
(noise, stress, pollution). Among the most emitting activities induced by the city, one can find - according to the 
nomenclature of the (IPCC, 1996) - energy consumption, industrial processes, solvent use and agriculture. But at 
the city scale, anthropogenic emissions result mainly from fuel combustion related to road transportation, as well 35 
as residential, commercial and institutional heating and boiling, that represent more than half of the total urban 
emissions (International Energy Agency, 2016). In Europe in particular, the fact that many cities are heavily 
dependent on cars (and sometimes on diesel fuel) adds to the air pollutant emissions balance. Thus, road 
transportation, production of electricity and heat represent more than 60% of the anthropogenic emitted nitrogen 
oxides (NOx), fine particles under 2.5µm (PM2.5) and non-methane volatile organic compounds (NMVOC) 40 
(International Energy Agency, 2016). Quantitatively, although sulfur oxide (SOx) emissions have been decreasing 
since the 1990s, NOx and particulate matter (PM) emissions are still increasing in Asia and do not show a clear 
downward trend in Europe (Amann et al., 2013; Klimont, 2017; Miyazaki et al., 2016). As a result, even if the 
exposure to short-time duration peak decreases, the population’s exposure to chronic pollution is still high in 
European urban areas (EEA, 2015), and 94% of exceedances of the short-term limit value for PM10 have been 45 
observed in urban or suburban areas (EEA, 2016). The health consequences are major. Recent estimates confirm 
the considerable burden of disease associated with urban air pollution, which is expressed through the occurrence 
of pulmonary and cardiovascular diseases, cancer, but also certain types of diabetes in adults, or through an attack 
on the neuronal development of very young populations. From an economic point of view, this represents a high 
cost of health care and a significant drop in productivity for businesses. In parallel, the societal issue related to the 50 
degradation of air quality is growing. According to a survey carried out between 2007 and 2015 on behalf of the 
European Commission (European Commission, 2010), there are 9 European Union capitals among the 20 cities 
with the lowest rate of people satisfied with the quality of urban air, with the biggest decrease of the satisfaction 
index being observed in Greater Paris. To deal with these issues, it becomes necessary to characterize the link 
between city, individuals, energy consumption and pollutant emissions, in order to understand how urban 55 
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structures guide residents' behavior. This turns out to be a necessary step in understanding the levers for improving 5 
air quality in large cities.  
 
The literature now recognizes the determining role of city configuration and building structure (Borrego et al., 
2006), as well as that of individual mobility in the exposure of individuals to pollution of the agglomeration. In 
particular, the relationship between the individual and urban space is known to be at the origin of a highly 10 
differentiated exposure, discriminating places of residence, lifestyles and social categories to be modified (O’Neill 
et al., 2003). 
 
Emission inventories for a current situation can be obtained through a top-down approach (using national 
aggregated information and spatial keys to distribute emissions on the territory), or through a bottom-up approach 15 
(collecting local information from specific sectors - e.g. road traffic count data - to generate a high-resolution 
inventory). Conventionally, regulatory coefficients are applied to current emissions to produce prospective 
emission inventories in order to stand for technological developments and the effects of a constant re-evaluation 
of emission standards. However, in view of the elements mentioned above, emission models used for prospective 
scenarios must be able to take into account the effects of urban planning in reducing the use of personal vehicles, 20 
as well as the role of individual practices in energy consumption. Thus, prospective emission calculations need to 
be rethought on the basis of the relationship between urban organization, individuals and activity. Only in that way 
can we help to identify the levers of urban air quality and urban sustainability.  
There are still a few research projects in literature that have incorporated a large number of urban components into 
the forcing of air quality models (Manins, 1995; Marquez and Smith, 1999; Martins, 2012; De Ridder et al., 2008). 25 
However, recent model developments have allowed the articulation between city and environmental mobility. 
Thus, over the last decade, social components have progressively been integrated in urban emissions models, such 
as TASHA-MATSIM-MOBILE6.2C (Hao et al., 2010) or TRANUS-TREM (Bandeira, Coelho, S, Tavares, & 
Borrego, 2011), which are now able to quantify the impact of urban policies on road traffic emissions by taking 
into account a variety of parameters such as car-pooling, transportation fleet technology and modal choice for 30 
individuals. The strength of these models lies in the choice of a microsimulation approach based on population 
choice, which depend on economics parameters. However, as seen in the works of (Hatzopoulou et al., 2008; 
Hülsmann et al., 2014), most of the resulting studies focused on road traffic emissions only. Yet, in the current 
environmental context which places great emphasis on the emerging concept of sustainable cities, it is necessary 
to consider all the emissions of air pollutants that are related to energy consumption, as they interact with climate 35 
change. In particular, there is a need to also take into account small combustion emissions (both residential and 
commercial) and their related policies to go further in the realism of the urban scenarios, and to treat the levers of 
future air quality more holistically.  
 
The OLYMPUS modeling platform was developed with the aim of taking into account the connections between 40 
the types of urban organizations, regulatory constraints, energy consumption behaviors and pollutant emissions. 
The objective is to build present, progressive or hypothetical urban scenarios in which we heighten the role of the 
built environment, and that of political and economic forcing, in the exposure of people to atmospheric pollutants. 
OLYMPUS is an emission modelling platform based on the simulation of the behavior (mobility, energy 
consumption) of individuals within an urban space. That is, it considers every single individual and the impact of 45 
their daily choices for activities, mobility and energy consumption practices on combustion emissions. In this 
paper, an overview is made of the characteristic features of the model. The main modules composing OLYMPUS 
will be presented individually. An application on the Greater Paris will be shown in the last section. The results 
and uncertainties of the model are discussed. 

2 OLYMPUS model overview  50 

The objective of this model is to estimate the pollutant emissions linked with energy-consuming urban activities. 
In this frame a first necessary step is the simulation of a synthetic population and its distribution in the considered 
urban structure, in order to quantify and to spatialize the targeted activities (road transport and building/domestic 
heating). Then, the model uses emission coefficients based on activity to produce a spatialized inventory of volatile 
organic compounds, nitrogen and carbon oxides and primary particulate matter. The OLYMPUS platform was 55 
designed to grasp information on city-specific parameters such as morphology, distribution of populations and 
employment centers, road transport networks and public transport, energy consumption units and climatic 
variables that influence the emissions. 
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2.1 Main characteristics 5 

In its current version, OLYMPUS models the pollutant emissions due to road transport and combustion processes 
from the residential and tertiary sector. It is composed of 6 calculation modules, supporting 4 main tasks (see 
Figure 1). 
 
One first specificity of OLYMPUS is that it relies on a synthetic population for the calculation of emissions and 10 
constitutes the first task. 
(a) This synthetic population is designed to be representative of the population living on the territory considered, 

and is characterized by the agents’ age, gender, principal activity and situation in a household. The creation 
of such a synthetic population is based on the reconstitution of surveys in the GAIA module. 

 15 
The second task of OLYMPUS is the provision of a road transportation database, calculated by considering 
individuals’ lifestyle. This database is obtained from successive diagnoses about individual trip generation - based 
on zonal attractions, travel distribution, modal split and route choice. In the OLYMPUS modelling process, this 
task relies on 3 modules.  
(b) A first module (THEMIS) defines the accessibility and attractiveness of the different administrative units of 20 

the city, as well as the average time travels between them.  
(c) The Activity-Based Travel Demand (ABTD) module called MOIRAI computes the daily activity patterns 

of all agents. It also describes their temporal and spatial daily mobility.  
(d) The assignment module HERMES provides spatialized daily trips by computing the shortest path between 

the origin and the destination of a trip (OD matrices).  25 
 
In parallel, OLYMPUS tackles the third task by computing the building energy demand.  
(e) For this purpose, the HESTIA module computes the average household energy consumption per square meter, 

the dwelling size of the household and the energy mix of the city in order to produce a spatialized building 
energy demand, including a climate correction specific to the simulated period.  30 

 
In the fourth task, OLYMPUS generates emissions from both road transport and small combustion heating 
systems. 
(f) Those emissions are calculated using reference methodologies. The computation of pollutant emissions is 

carried out by the VULCAN module. 35 
 

All the OLYMPUS running scripts are based on a shell interface, programmed in Python 2.7 and compiled in C 
for faster execution speed. For graph networks and spatialized data analysis, NetworkX (Hagberg et al., 2008), 
GeoPandas and NetCDF’s libraries have been included to the Python interpreter. Because of the significant number 
of calculation loops, the model applies a data parallelism which consists in a partitioning of data with a 40 
Multithreading approach.  

3 The synthetic population generator (GAIA) 

The synthetic population generator GAIA is the first OLYMPUS module to be run. It allows the generation of a 
synthetic population that is representative of a given urban area. The synthetic population generator mainly uses 
urban-level census data to attribute age, gender and main activity – as well as socio-economics parameters such 45 
as the possession of a driver's license - to each agent in this population. The module spatializes this synthetic 
population through an urban zoning based on household densities in the urban area, an exogenous variable 
provided to the model. In the end, a synthetic population based on data census or demographic scenarios is 
obtained, with an individual description of its agents.  
 50 
There are several techniques to estimate a population in a small area based on statistical approaches, as listed in 
(Rahman, 2017). The most common method is the Iterative Proportional Fitting (IFP) procedure (Deming & 
Stephan, 1940, Baggerly, & McKay, 1996; Müller K., & Axhausen, K.W. 2010), which generates an adjusted 
matrix of the survey data used to constrain the global synthetic population patterns, based on the minimization of 
chi2, a method for estimating unobserved quantities from marginal numbers. The algorithm must be fed with the 55 
total population data and subtotals by property type using both aggregated and disaggregated data. Conditional 
probabilities are also one of the methodologies for creating a synthetic population. This approach is based on 
Bayesian statistics and it relies on a representative sample of population, in which the discrete conditional 
probabilities governing every characteristic (age for example) are identified. Then, a unique value of this 
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characteristic is assigned to each agent of the population using a random distribution that follows the identified 5 
probability law. The approach makes it possible to create (on the basis of a representative sample) a database that 
distinguishes each individual (disaggregated data) as well as each household and dwelling, by attributing them to 
their own characteristics. These two methods differ in how to generate the dummy population but the results are 
admittedly identical. In terms of outputs, one of the major interests of the IPF procedure is its ability to generate 
greater variability in populations than conditional probabilities. However, the use of this approach in a region such 10 
as Ile-de-France requires a significant amount of work to structure the input data. For this reason, we decided to 
use the conditional probability approach, which has been widely used in the fields of populations’ transport 
demand modelling (Antoni et al., 2010; Banos et al., 2010; Mathis et al., 2008). In order to mitigate a possible lack 
of variability, we proceeded to the implementation of a spatial component in the distribution of the socio-economic 
characteristics of the agents. 15 
   
The implementation of GAIA takes place in 2 main stages and is referenced in Figure 2. 

- The determination of the urban structure, based on an urban density index (UDI) and divided into 3 
classes: the urban pole (CENTER), urban areas (URBAN) and suburbs (SUBURBAN). (Figure 2.b) 

- For each household in the urban area, the module generates the synthetic population by defining the 20 
household size and the agent properties using conditional probabilities. (Figure 2) 

 

3.1 Urban structure 

The prerequisites of the population generation are the domain definition and the classification of urban areas in 
based on an urban density index (UDI). GAIA discretizes the type of urban zone on a scale from 1 to 3 25 
(SUBURBAN – URBAN – CENTER) depending on population density. Figure 2.b represents a schematic 
representation of UDI with population-specific attributes in each urban area based on the UDI. Such a discernment 
is needed for realistic purposes because population density affects the urban landscape (buildings and houses), the 
localization of activities and the structure of households. Here, the assumption made is that household family type 
distribution is different between urban pole, urban areas and suburb areas, and that building and house distribution 30 
will vary between the different zones. In parallel, the structure of households varies according to the distance from 
the urban center, following (Hulchanski, 2010). These hypotheses provide a larger spatial distribution variability 
of agents than a simple conditional probability distribution would.  
The UDI is defined in Eq. (1) This is the result of the classification of the dataset following 3 large sets by applying 
a linear cut from sparse to very dense areas. It is based on population density and the population is digitized as a 35 
function of the population density logarithm. 
 

𝑼𝑫𝑰(𝑧) =

𝑪𝑬𝑵𝑻𝑬𝑹, 𝑖𝑓	 log 1 +	677
8

>	∝;	

							𝑼𝑹𝑩𝑨𝑵, 𝑖𝑓	 ∝>	< log 1 +	677
8

<	∝;

𝑺𝑼𝑩𝑼𝑹𝑩, 𝑖𝑓	 log 1 +	677
8

<	∝>

,  (1) 

 
Where ∝> and  ∝; are key classification values depending on the logarithm of households density, 𝑛BBthe number 40 
of households, z a specific area of the domain and A is the surface area.  

3.2 Generation of synthetic population 

The generation of the population depends on Probability Mass Functions (PMF) that rely on census data as referred 
to in figure 2.d which represent the PMF of the age of an agent living alone. In each zone and for each household, 
GAIA uses a discrete probability distribution to: 45 
 
(a) Define the number of agents in the household  
(b) Characterize the type of family  
(c) Define agents gender, age, principal activity  
 50 
Eq. (2) predicts the number of agents in the household, depending on the type of zone (CENTER, URBAN, 
SUBURBAN) that differ in terms of urban structuration. The probability to have n agents in the household is based 
on conditional probabilities, and defined by a truncated Poisson distribution: 
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𝑃BBD 𝑛|𝜆, 𝑈𝐷𝐼 = 	 𝑒KL
MN
N! 	   (2) 5 

 
where 𝜆 is the average household size, n is the number of agent in household ∈ 	𝐴, (with A = [1,7] and A ∈ ℕ). 
Figure 2.c is an example of the household size probability distribution based on a truncated Poisson's law. 
 
Eq. (3) is used to define the type of household among the 4 family classes which are Alone (male/female); Couple 10 
- No children; Couple with children; Single parent family (male/female). The selection of the family type is also 
based on conditional probabilities (𝑃S8T	) and follows  
 

𝑃S8T	 𝑛 =
"Alone", 𝑖𝑓	𝑛 = 1

𝑃>S 𝑛 , 𝑖𝑓	𝑛 = 2	𝑎𝑛𝑑	 ∈ 	𝑅>S	
𝑃;S 𝑛 , 𝑖𝑓	𝑛 ≥ 3	𝑎𝑛𝑑	 ∈ 	𝑅;S

,  (3) 

 15 
where RnF is family type set for n individuals in the household 	
𝑅>S = "Couple", "𝑠𝑖𝑛𝑔𝑙𝑒	𝑝𝑎𝑟𝑒𝑛𝑡	𝑓𝑎𝑚𝑖𝑙𝑦"  	
𝑅;S = "Family", "𝑠𝑖𝑛𝑔𝑙𝑒	𝑝𝑎𝑟𝑒𝑛𝑡	𝑓𝑎𝑚𝑖𝑙𝑦" 	 
and 𝑃>S 𝑛 , 𝑃;S 𝑛  correspond to weighted functions based on survey data.  
 20 
Eq. (4) allows estimating the agents’ attributes (age, gender, principal activity). The gender of every agent is 
defined by a conditional probability (while the gender of its partner is opposite) such as: 
 

𝑃def 𝜂 =
𝑃Dhi(), 𝑖𝑓	ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑒𝑟	𝑎𝑛𝑑 ∈ 		 𝑅def	

𝑃Dhi(), 𝑖𝑓	𝐶ℎ𝑖𝑙𝑑	𝑎𝑛𝑑 ∈ 		 𝑅def
𝑃Dhi;(), 𝑖𝑓	𝑃𝑎𝑟𝑡𝑛𝑒𝑟	𝑎𝑛𝑑 ∈ 		 𝑅def

,  (4) 

 25 
𝜂 represent the agent situation in the household, RGDR is the sample space and consist of 2 elements {“male”, 
“female”}, 𝑃Dhi>()correspond to a weighted function based on census data and 𝑃Dhi;() 
is conditioned by the householder sex.  

 
The age of an agent depends on the type of household – still based on conditional probabilities – which is linked 30 
to specific sample spaces: for householders, for couples (age difference less than 20 years), and for children. There 
are 20 age classes with a 5-year division.  
 

𝑃8no 𝜂 =
𝑃8_> 𝑛 , 𝑖𝑓	householder	𝑎𝑛𝑑 ∈ 𝑅wxyz{wx|}{~	

𝑃8_; 𝑛 , 𝑖𝑓	𝐶ℎ𝑖𝑙𝑑	 𝑎𝑛𝑑 ∈ 𝑅�B��e
𝑃8_� 𝑛 , 𝑖𝑓	𝑃𝑎𝑟𝑡𝑛𝑒𝑟	𝑎𝑛𝑑 ∈ 𝑅wxyz{wx|}{~	

, (5) 

 35 
Where 𝑃8_> 𝑛 , 𝑃8_; 𝑛  and 𝑃8_� 𝑛  are probability mass functions based on census data. 𝑅wxyz{wx|}{~	, 𝑅�B��e and 
𝑅��f�6hf are age type set for n individuals in the household with  
𝑅Bh�e 					= 	 [20;70] and 𝑅Bh�e ∈ ℕ 
𝑅�B��e 					= 	 [0;20] and 𝑅�B��e ∈ ℕ 
𝑅��f�6hf = 	 [20;70] and 𝑅��f�6hf ∈ ℕ 40 
 
The principal activity of the agent depends on its age and on the unemployment rate. Agents under 18 are educated 
and agents over 65 are retired. The other agents may be either employed, unemployed or follow studies. 
      

𝑃8�� 𝑎𝑔𝑒 =

	
𝑃8��> 𝑎𝑔𝑒 , 𝑖𝑓	20 < 𝑎𝑔𝑒 < 30		𝑎𝑛𝑑	 ∈ 𝑅���>
𝑃8��; 𝑎𝑔𝑒 , 𝑖𝑓	30 < 𝑎𝑔𝑒 < 65	𝑎𝑛𝑑	 ∈ 𝑅���;

"School", if 𝑓	𝑎𝑔𝑒 < 18
"Retired", if 𝑎𝑔𝑒 > 65

, (6) 45 

 
Where 𝑃8��> 𝑎𝑔𝑒  and 𝑃8��; 𝑎𝑔𝑒  represent the probability mass functions to have as principal activity one of 
the activities set 𝑅���> or 𝑅���; 	
𝑅���> = "Active", "𝑆𝑐ℎ𝑜𝑜𝑙"   
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𝑅���; = "Active", "𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑"  5 

4 Road transportation generation 

To simulate the transport demand of the population based on activities, OLYMPUS needs to be fed with numerous 
external data. The spatial distribution of employment centers is one first key parameter: OLYMPUS is filled in 
with a spatialized file containing information on the number of employment per zone. The data are usually 
formatted under a Geographic Information System (GIS) due to their spatial pattern. To simulate the ABTD, the 10 
model requires socio-economic data at a disaggregate level for each zone, which are provided by the synthetic 
population generator GAIA. Then, transport networks are required as another external parameter. The road 
network includes the city highways and main traffic lanes with information on free-flow speeds. The transit 
network includes all the transit stations and the format of the data is also GIS. All these data will be analyzed at a 
local level called travel analysis zones (TAZ) which may be districts, sub-districts, municipalities or any other 15 
city division. The degree of precision of the zones imposes the refinement of population mobility. 
 
 
Urban road transport modelling is organized in 3 steps:  
 20 
(a) Determination of the attractiveness and accessibility of the different zones that constitute the domain.  
(b) Restitution of the agent movements based on the realization of the programmed activities. 
(c) Assignment of motorized displacements on the road network.  
 

4.1 TAZ accessibility and attractiveness (THEMIS) 25 

The operating diagram of this module is presented in figure 3.a.  
The main steps are: 

- Definition of accessibility  
- Computation of attractiveness 

 30 
One of the main data driving the ABTD model (ABTDM) is the accessibility of the TAZ, which helps to estimate 
the mobility choices. Accessibility refers to the pool of activities considered as useful within a given radius. Its 
value accounts for the potential of access to this zone by public transportation, which makes it a crucial parameter 
for the choice of the agent transportation mode. For this purpose, THEMIS analyses the TAZ population density, 
road network and public transportation network. This results in a 5-level index of public and private transport 35 
accessibility to the area which is called the Urban Transport Accessibility Index (UTAI). The hypothesis we make 
is that density of household and public transportation station both influence the transportation mode. As shown in 
Figure 3.b, a zone with UTAIMIN will only be served by WALK and a zone with UTAIMAX will be well connected 
with a large choice of transport infrastructures. The definition of the 5 UTAI classes depends on the value of µ, 
defined by the following equation: 40 
 

𝑼𝑻𝑨𝑰 𝑧𝑜𝑛𝑒 =

1, 𝑖𝑓	 µ <	∝>
										2, 𝑖𝑓	 ∝>	< µ <	∝;
											3, 𝑖𝑓	 ∝>	< µ	 <	∝�
										4, 𝑖𝑓	 ∝>	< µ	 <	∝�

5, 𝑖𝑓	 µ	 >	∝�

,  (7) 

 
with 

µ = log 1 +	
𝑛BB×	𝑛D�

𝐴
, 45 

Where ∝>, ∝;, ∝� and  ∝�	are key classification values depending on the logarithm of household density and 
public transport density. 𝑛BB is the number of households per TAZ, 𝑛D� is the number of public transportation 
stations in the TAZ and A is the area of the TAZ.  
The UTAI index (see the correspondence in Figure 3.b) thus helps to design the city use from its transport 
infrastructure and to define realistic public transport travel time such as Paris public transport isochronous curve 50 
(Figure 3.c). 
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 5 
The attractiveness of activities is an important parameter that shapes the agenda of population agents. It can be 
defined as its ability to attract agents in order to perform a given activity and based on the average distance of a 
trip as shown in Figure 3.c. The model assumes that there are 2 types of activities: WORK and OTHER. The 
complete list of the OTHER activities taken into account in the ABTD model are: 
 10 

- HOME 
- SCHOOL  
- SHOPPING 
- SECONDARY 
- ACCOMPAGNYING 15 
- VISIT 
- LEISURE 

 
The major parameter that differentiates between our 2 types of activities is the average trip length that varies 
widely, the average work-based trip distance being longer than the other activities-based trips. The distance to the 20 
TAZ is a substantial variable in estimating its potential attractiveness. The attraction potential of WORK depends 
on the number of jobs in the TAZ. Concerning OTHER activities, their attraction is a function of the population 
density per TAZ. However, some activities like visiting a friend or going on vacation remain underestimated by 
the ABTD model.  
The activity attractiveness calculation is based on the gravity theory model from (Huff, 1964). It relies on the 25 
definition of an activity weight, and it works by analogy with Newton's law of gravity. The probability of 
conducting any activity at a specific location is thus defined as follows: 
 
𝑷W(𝒊, 𝒋) = 	 W(�,�,e)

W(�,�,e)�
   (8) 

 30 
where the attractiveness W	is defined by:  

W(𝑖, 𝑗, 𝑑) = 𝐴𝑐𝑡	� × 𝐴𝑐𝑡	� × >
� ;�

𝑒K
�
�(

�	�	�
  ) , (9) 

and	σ = 	 e
;
, 

In this equation, 𝑑¤h�6	represents the mean distance to reach the Act activity, while i and j respectively are the 
indexes of the origin and destination zones.  35 
 
In the end, the attractiveness parameter is highly dependent on the city structure and inhabitant travel uses. (Kwan, 
2003) found that few peoples are acting to minimize their journey to work by relocating either their home or 
workplace. Considering this, mobility surveys provided by some countries may be used to match realistic mean 
travel distances. 40 

4.2 Activity-based travel demand (MOIRAI) 

 
The MOIRAI module simulates the mobility choices for each agent of the synthetic population during the day. 
One essential challenge of the module is to represent the mobility in the most realistic way possible, by taking into 
account the social constraints of each agent in space and time. Several ABTDM exist in literature. (Malayath and 45 
Verma, 2013) propose a review of existing models and their uses. Based on this review, we have decided to use 
the theory of random utility to simulate the choice of individuals in MOIRAI. In this theory, a stochastic approach 
allows to take into account rationality in the agent decisions. That is to say, the decision is described as the choice 
to do what is most useful, depending on possibilities. In this process, utility is generally expressed according to 2 
components, one describing the observed practices and another one describing the random component.  50 
In the theory of random utility, the main hypothesis is the maximization of utility, influencing the decisions of the 
agent. MOIRAI is based on the use of the MultiNomial Logit (MNL) model (McFadden, 1973), which considers 
that the random components of the utility are Independent and Identically Distributed (IID) and that the distribution 
is Gumbel type: 
 55 

𝑃¤¥eh,� = 	
h�¦§¨©¨§ª«¬�­,¨

h�¦§¨©¨§ª«¬�­,¨N
¨®¯

 . (10) 
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where 	𝑈𝑡𝑖𝑙𝑖𝑡𝑦¤¥eh,� represent the utility function of a transportation mode i. 5 
 
MOIRAI is implemented in 3 main stages common to many ABTD models (Castiglione et al., 2015):  
 
(a) Generating daily activities of the agent. 
(b) Managing the time schedule of the agent. 10 
(c) Identifying type of transport used for each trip.  
These steps are described hereafter (see figure 4.a).  
 

4.2.1 Generation of daily activities  

One important step when modeling the time schedule of an individual is to estimate the number of trips this agent 15 
makes per day as shown in figure 4.b. As this number is a function of priorities, the first step in generating an 
agent's agenda is thus to define his priorities. The obligation to carry out an activity, such as going to work or 
accompanying kids to the nursery, defines the priority of an agent. Once these priorities are defined, an agent can 
perform optional activities such as shopping, visiting a friend, or going to the movies. There are 3 priorities in the 
model. Work – School - Accompanying (bring a child under 10 years to school). And the model can combine 20 
WORK and ACCOMPANYING priorities. 
The number of daily trips (p) made by an agent depends on his priorities (x) and is based on discrete probabilities 
distribution as follows: 
 
 25 

𝑃�f��D 𝑥 = 	

	
	𝑃�f��D	���>	 𝑥 , 𝑖𝑓	𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑒𝑠 = 1
𝑃�f��D	���; 𝑥 , 𝑖𝑓	𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑒𝑠 = 2
	𝑃�f��D	¥�Bhf 𝑥 , 𝑖𝑓	𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑒𝑠 = 0

							𝑃�f��D	fh��fhe 𝑥 , 𝑖𝑓	𝑎𝑔𝑒𝑛𝑡	𝑎𝑔𝑒 > 65

,  (11) 

 
where 𝑃�f��D	���>	 𝑥 , 𝑃�f��D	���;	 𝑥 , 𝑃�f��D	¥�Bhf	 𝑥 , 𝑃�f��D	fh��fhe	 𝑥  are the probability to make p daily trips based 
on x agent priorities and with	𝑥, 𝑝	 ∈ ℕ. 
 30 
The probability 𝑃�f��D 𝑥  is derived from a specification of a daily trip number based on age and priorities. This 
daily number of trips varies from one country to another. This parameter can be provided from local surveys, or 
estimated from an aggregated survey database. We used the information provided by household travel surveys, 
indicating that the mobility of children and old people is lower than the average population (20 - 60 years).  
 35 
After determining the number of activities of the agent and prioritizing them, MOIRAI defines a tour sequencing 
to estimate the number of activities and their order. The sequences may be a Home-Based Tour (HBT), a Multiple 
Home-Based Tour (MHBT), or a Non-Home-Based Tour (NHABT) tour.  Figure 5 presents the different types of 
sequencing modelled in OLYMPUS. 
Depending on the number of trips, it is possible to conduct a home-centered tour or several tours, one centered on 40 
the place of residence and another one centered on other activities.  
The model takes into account HBT, MHBT, escort tour, HBT with activities based on sub-tour. The probability to 
make a single or several tours depends on the number of daily trips.  
 
 45 
 
After having generated the agent's time schedule, the module locates each activity. According to the TAZ in which 
the agent is located, the model estimates the place where the agent will have the greatest probability to carry out 
the planned activities. This is done according to the attractiveness of the TAZ calculated by THEMIS, and using 
the Huff random probability approach for the activity location choice. For the location of the WORK activity, we 50 
use 𝑷W(𝒊, 𝒋)	the probability of attractiveness for jobs center. For OTHER activities, the 𝑷W(𝒊, 𝒋)	probability of 
attractiveness is based on population density. 
 
The last step of the generation of daily activities is the implementation of the time to provide a duration for all 
activities as shown in figure 4.c. MOIRAI computes this parameter using conditionals probabilities with a time 55 
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step of 1 hour. The module affects a random value to the start time, depending on the agent priorities. If the sum 5 
of activities exceeds 24 hours there is a re-start of the simulation.  
For the first activity, the start time is calculated by: 
 

𝐴𝐶𝑇	>D� 𝐴𝑐𝑡	 =

				𝑠𝑡hD�¥f�	 𝑥 , 𝑖𝑓	𝐴𝑐𝑡	 = "𝑒𝑠𝑐𝑜𝑟𝑡"
				𝑠𝑡D�B¥¥� 𝑥 , 𝑖𝑓	𝐴𝑐𝑡	 = "𝑆𝑐ℎ𝑜𝑜𝑙"
𝑠𝑡¶¥f· 𝑥 , 𝑖𝑓	𝐴𝑐𝑡	 = "𝑊𝑜𝑟𝑘"
			𝑠𝑡¥�Bhf 𝑥 , 𝑖𝑓		𝐴𝑐𝑡	 = "𝑂𝑡ℎ𝑒𝑟"

	,  (12) 

 10 
 
Where 𝑠𝑡hD�¥f�	 𝑥 , 𝑠𝑡D�B¥¥� 𝑥 , 𝑠𝑡¶¥f· 𝑥  and 𝑠𝑡¥�Bhf 𝑥  represent the start time of the first activity of the day. 
The start time is based on a normal distribution as shown in Figure 6. 
 
 15 
𝐴𝐶𝑇	»�BhfD� 𝐴𝑐𝑡	 = 𝑖𝑡𝑖𝑚𝑒 + Dur	(𝐴𝑐𝑡	)  (13) 
 
Where:  
𝑖𝑡𝑖𝑚𝑒 𝑖 = 	 Dur	8��	 𝑗�K>

½ + 	𝐴𝐶𝑇	>D� 𝐴𝑐𝑡	   (14) 
And Dur represent the duration of activities, defined as a random variable in a truncated interval over a range of 20 
time. The distribution of activities start time and duration in OLYMPUS is presented in Figure 6.  

4.2.2 Modal split 

The modal choice is clearly a critical parameter for calculating pollutant emissions from urban mobility. In 
OLYMPUS, the set of simulated modes of travel includes the WALK (walking and cycling), PC (passenger car 
and 2-wheels) and PT (including underground, bus, tram, and train) modes. The objective is to define the 25 
probability of the use of a specific mode of transport according to the utilities of the modes. The modal choice is 
obtained from the expression of the utility function for each transportation mode (𝑈¤¥e,�). The utility value arises 
from the generalized cost of transport, (including time budget (𝑡¾¿edh�)	, the perception a of mode i and from the 
monetary cost (𝑚�¥D�)). In this calculation, the travel time is expressed as a weighting of transport time and 
penalties (tolls, parking, traffic jams ...) named 𝑃¤¥e, that adds up to the total: 30 
 
𝑈¤¥e,� = 	𝑚�¥D� 	+ 𝑎 ∗ 𝑡¾¿edh� + 	𝑃¤¥e,  (15) 
 
The utility function of the WALK transport mode mainly depends on the time cost of the travel. The WALK mode 
average speed, 𝑆𝑝𝑒𝑒𝑑Á8ÂÃ	¤h�6, is defined to be 3.6 km/h. Thus: 35 
 
𝑈¤¥e,Á8ÂÃ = 	

»Ä�¨Å§ÆNÇ­
È�hheÉÊËÌ	«­ÆN

	+ 	𝑃Á8ÂÃ,  (16) 
 
Where 𝑃Á8ÂÃ represent walk penalties and the distance between the origin and the destination activity, 𝑂𝐷e�D��6�h, 
is  based on the Great-circle distance calculation, 40 
 
𝑂𝐷e = 𝐴𝑟𝑐	cos	(sin 𝜑8 × sin 𝜑Ï + cos 𝜑8 	× cos 𝜑Ï ×	𝑑𝜆),  (17) 
 
where A and B respectively designate the origin and destinations points, 𝜑8, 𝜑Ï, λA and λB represent their latitudes 
and longitudes, and dλ = λB – λA.  45 
 
For the individual passenger car mode(PC), the utility function is defined as follows:  
 
𝑈¤¥e,Ð� = 	

»Ä�¨Å§ÆNÇ­
È�hheÑÒ	«­ÆN

+ 	𝐶𝑜𝑠𝑡�8Ó + 𝑃Ð� ,  (18) 
 50 
By default, the PC average speed, 𝑆𝑝𝑒𝑒𝑑Ð�	¤h�6, in urban areas is defined to be 22.6 km/h. This value is based on 
(Hickman et al., 1999) and represents the average driving speed in urban areas as recorded during the MEET 
project. The 𝑂𝐷e�D��6�h is also based on the Great-circle distance equation (Eq. (17)). The 𝐶𝑜𝑠𝑡�8Óvariable 
accounts for the mean kilometric cost of the car use. The penalties are coded as an additional monetary cost such 
as tolls, parking tickets, penalty for short distance trips, congestions and taxes, which can be summed to the 55 
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calculation of the PC utility. The time cost is calculated by computing the shortest path at the city scale. There, the 5 
computational time is considerably increased during this process due to the important number of agents.  
 
As for the public transport (PT) utility function from one TAZ to another, we use the following equation: 
 
𝑈¤¥e,Ð� = 	 𝑡Ð�	 + 𝐶𝑜𝑠𝑡Ð� + 𝑃Ð� (19) 10 
 
In this equation, the trip duration using the PT mode is 𝑇𝑖𝑚𝑒Ð�	. It is a function of both the accessibility to the 
destination area and the average distance between the origin and destination points. The average transport time 
from one TAZ to another includes walking, waiting and travel duration. Its calculation is done by a linear 
regression based on indications of transport times per zone and is thus based on realistic travel time. 15 
 
𝑡Ð�	 𝑑, 𝑧 = 	𝛼	�,�	×	𝑎	×d + 𝑏	 + 	𝑊��¤h(UTAI), (20) 
 
where 𝛼	�,� represents the mean time spent in public transportation between 2 zones and a and b are the linear 
regression coefficients. And 𝑊��¤h is the waiting time depending on UTAI. 20 
 
The 𝑡Ð�	 parameter is usually calculated using General Transit Feed Specification (GTFS) data - if available for 
the city, and computed using the Connection Scan Algorithm (Dibbelt et al., 2013) or the RAPTOR algorithm 
(Delling et al., 2012). The limitation of these methods is the huge computational time required. As a consequence, 
they were not considered here. However, since public transport time is an essential variable for the estimation of 25 
the general cost of public transport, we have developed a methodology based on a zonal approach and using the 
UTAI. This method has limitations compared to CSA or RAPTOR algorithms. However, an appropriate estimation 
of the UTAI matrix and a suitable calibration of the module with the real transport times leads to satisfactory 
results. The 𝐶𝑜𝑠𝑡Ð�variable represents the daily cost of the transit. The transit penalties can be represented by the 
frequency of service of public transport. 30 
 

4.3 Assignment  

The transport demand previously generated by the ABTD module (MOIRAI) produces travel matrices that only 
supply information on the origins and destinations of the flows. The next step is to project on our grid the paths 
taken by the agents, in order to further provide spatialized pollutant emissions from transport. For this purpose, 35 
we only take into account the flows related to private vehicle use.  
There are 3 ways to deal with traffic assignment. One is the microscopic approach, which considers the traffic at 
the scale of each vehicle, as proposed by models like VISSIM (Gomes and May, 2004), AIMSUN (J. Barcelo, J.L. 
Ferrer, 1989) and PARAMICS (Cameron et al., 1994). A second approach is that of mesoscopic models, which 
are interested in the evolution of sets of vehicles, as do the CONTRAM (Taylor, 2003) and DYNASMART 40 
(Mahmassani et al., 2005) models. Both approaches are not very compatible with the city scale we focus on. 
Indeed, although there may be an added value to running instantaneous emission models like PHEM (Rexeis et 
al., 2013) and MOVES (U.S. Environmental Protection Agency, 2013), obtaining input traffic data that describes 
every vehicle acceleration and deceleration cycles is quite challenging, and their consideration requires high 
computational time. Both constraints make this microscopic approach somehow precarious. We thus have to rely 45 
on a macroscopic description of the traffic, in the form of a stream and using global variables such as vehicle flow 
and average speed on each section of a traffic axis, like what is done in the DAVISUM (Broquereau L., 1999) and 
TransCAD (Caliper Corporation, 2010) models. As most of these transport models are not open source, we opted 
for the development of our own traffic assignment model inside the OLYMPUS platform: HERMES.  
HERMES is a macroscopic traffic module that works with average speed values for the vehicle flows, thus ignoring 50 
the dynamics of traffic within a road. This approach is compatible with our simulation scale. It is also compatible 
with the most common methods of estimating traffic-related combustion emissions, which rely on emission factors 
per driving cycle, each cycle being characterized by an environment (city, highway, etc..), and by a mean speed 
per strand.  
 55 
There are main 4 stages in the allocation of agents to the road network in the HERMES module (See Figure 7.a).  
 
(a) Definition of the road graph 
(b) OD shortest path  
(c) Goods and inter-regional transport modelling  60 
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(d) Speed on link computation  5 
 
First, the road network is extracted from GIS road data and transformed into a graph that records the connections 
between the different road sections, thus creating a set of edges and nodes (intersections) using the graph theory 
(Bondy and Murty, 1982). The speed limit is the main attributes of edges.  
Second, HERMES proceeds to the computation of the shortest path for each trip by solving the Dijkstra algorithm 10 
(Dijkstra, 1959). For each trip, the module identifies the nodes of the graph that are closest to the geo-referenced 
O and D points. To choose the shortest path from the algorithm outputs, HERMES uses the time spent on a link 
as a weighting. 
In a third step, the integration of the regional traffic flow – including the goods and different patterns of inter-
regional transportation – is made. This complimentary step is necessary because the MOIRAI travel demand only 15 
considers personal trips for agents living in the city. Inter-regional transportation, heavy-duty vehicle (HDV) 
transportation and light commercial vehicle (LCV) transportation are thus not taken into account. This is why we 
developed an approach that extrapolates the flow of goods and interregional transportation trips from a reference 
ratio “passenger car / total fleet” and the HDV and LCV traffic from known ratios inferred at the urban scale. 
Indeed, surveys on fleet composition are available for many cities. They are often based on transport organizations 20 
like TFL in London. 
Finally, HERMES proceeds to the integration of network congestion in its evaluation of mobility. Road congestion 
alters speed on the road network as shown in figure 7.c. The approach is based on (UK Department of Transport, 
1997) and can be represent as follows: 
 25 
 

𝑆��6·	 = 	 	

𝑆½	, 𝑖𝑓	𝐹� < 50		
𝑆½ −

È¯KÈÇ
SÇKS̄

	×	 𝐹� − 	𝐹½ , 𝑖𝑓	𝐹½ < 	𝐹� < 	𝐹�
ÈÇ

>Ü( ÝÇÞ×�)×(
ß¨
ßÇ
K>)

	 , 𝑖𝑓	𝐹� > 𝐹�
, (21) 

	 
where the speed on the link 𝑆��6·	depends on the link flow	𝐹� and length d. 𝑆½	is the free-flow speed, 𝑆�	is the 
congested speed, 	𝐹� the link flow capacity.  30 
 
 
This is one of the approaches suggested by (Ortuzar and Willumsen, 2011) to attempt to represent empirical 
congestion. One limitation of this methodology is the consideration of the impact of signaling. Other congestion 
functions like the one presented by (Akçelik, 1991) deal better with delays at the junctions. However, the approach 35 
we chose was shown to produce a satisfactory estimation of traffic flows on the main roads. On the other hand, 
this method requires knowledge of the location of traffic lights. For street scale studies, (Akçelik, 1991) method 
adds a certain realism to the modeling of the traffic. At the city level, the approach developed in the assignment 
module generates good estimations of the road network saturation. 

5 Building energy demand  40 

Figure 8 presents the flowchart of HESTIA, the OLYMPUS module in charge of simulating the building energy 
demand. HESTIA uses the type of housing, the living area of the household and their average annual energy 
consumption as input parameters. The main task of this module is to spatialize the energy demand in the territory.  
(Swan and Ugursal, 2009) have proposed a review of models and methodologies for simulating the energy demand 
of buildings. In this frame, both Top-Down and Bottom-Up approaches rely on the econometric, statistic and 45 
engineering aspects of the energy demand. They are mainly developed to achieve a better understanding of the 
efficiency and cost of energy policies. Due to its global approach, the Top-Down method lacks flexibility to create 
scenarios involving a change in methodology. On the other hand, some of the input parameters considered in a 
Bottom-Up approach go beyond what is feasible on a regional scale. They sinclude detailed data by type of 
building (structural properties, equipment, usage) as well as individual parameters such as the orientation of 50 
buildings in relation to the sun. In OLYMPUS, the combustion emissions modeling is carried out in two steps by 
the HESTIA module. It lists combustion activities for residential, institutional and commercial heating, as well as 
for hot water and cooking. The process is similar to Top-Down approaches, but the implementation of Bottom-Up 
factors related to energy efficiency or household characteristics makes it possible to envisage the implementation 
of energy scenarios.  55 
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The generation of the energy demand of the residential sector is done by modeling the energy demand of each 5 
household. It is a function of the size of the household, the size of the dwelling, the type of dwelling, the age of 
the dwelling and it also depends on a thermal efficiency coefficient. To generate the energy demand of the 
residential sector, HESTIA uses population density. The first step is to determine the ratio “collective to individual 
dwelling” as a function of population density and zone type, using GAIA outputs. This ratio is clearly dependent 
on the country in question, and on local data such as building height or urban density.  10 
 
The calculation must therefore be specific to the area of interest. In HESTIA, household dwelling distribution 
(house/apartment) is formulated as follows: 
 

𝑃ÄÁ	�à�h	(𝑥) = 	
					𝑃ÄÁ	¿f¾ 𝑥 , 𝑖𝑓	𝑧𝑜𝑛𝑒 = 𝑈𝑟𝑏𝑎𝑛

											𝑃ÄÁ	D¿¾ 𝑥 , 𝑖𝑓	𝑧𝑜𝑛𝑒 = 𝑆𝑢𝑏𝑢𝑟𝑏𝑎𝑛
		𝑃ÄÁ	f¿f	 𝑥 , 𝑖𝑓	𝑧𝑜𝑛𝑒 = 𝑅𝑢𝑟𝑎𝑙

, (22) 15 

 
We assume that CENTER and URBAN areas include a majority of buildings whereas SUBURBAN areas are the 
place where a larger part of individual houses are built. First, HESTIA begins by calculating the size of the 
dwelling (𝐷𝑊á¥6h), based on a reference size value  (𝑆𝑢𝑟𝑓â�) for different type of dwelling which depends on 
each specific zone (𝛾äÄå) and takes into account the number of agents (n) living in the housing:  20 
 
𝐷𝑊á¥6h = 	 𝑆𝑢𝑟𝑓â�×𝛾äÄå×𝑛   (23) 

 
The energy used for heating and boiling water is defined by the distribution of the energy-mix, which is an 
exogenous parameter referred in the model as: 25 
 

𝑃h6hfdà =
𝑃 𝑒𝑛𝑒𝑟𝑔𝑦> , 𝑖𝑓	"𝐻𝑜𝑢𝑠𝑒"

𝑃 𝑒𝑛𝑒𝑟𝑔𝑦; , 𝑖𝑓	"𝐴𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡"
,  (24) 

 
Then, HESTIA calculates the energy consumption per household,	𝐸𝑁�¥6D, considering the size of the dwelling, 
𝐷𝑊á¥6h, the unit energy consumption per household (ECU)and the size of the household (ℎℎ𝑠𝑧) :  30 

 
𝐸𝑁�¥6D ℎℎ = 𝐷𝑊á¥6h×	𝐸𝐶𝑈	×	ℎℎ𝑠𝑧 (25) 
 
Finally, the module applies a climatic correction to the energy consumption in order to estimate the under/over 
consumption of energy due to the cold/hot climate. The degree-day (DD) is the parameter allowing to quantify 35 
this correction as a function of everyday temperature in the considered year, compared with a reference year (Jones 
and Harp, 1982). 
 
The calculation of the energy demand of the tertiary, institutional and commercial sectors is similar to that shown 
above, though it is based on an annual energy consumption per employee (ECUw). Also, the spatialization of 40 
emissions is derived from the location of job centers and from their respective capacities (employment data by 
zone). Thus, the employee energy demand can be defined as:  
 
𝐸𝑁𝑊�¥6D 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 = 	𝐸𝐶𝑈𝑤	×𝑛¶¥f·hf	(26) 
 45 
A climate correction is also added to the consumption of this sector.  
 

6 Emissions  

 
The calculation of pollutant emissions from both road transportation and building energy consumption is the role 50 
of the VULCAN module, which constitutes the last step of OLYMPUS. There, the quantification of pollutant 
emissions is based on methodologies recommended by the European environment agency (EEA) guidebook 
(European Environment Agency, 2013) for air pollutants and Green House Gases (GHG) emissions. They rely on 
the use of emissions factors, which may depend on the type of fuel, but also on the age and combustion technology 
of engines and stoves. The VULCAN flowchart is shown in figure 9.a. 55 
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6.1 Road emissions 5 

Emissions from road transport – labeled as mobile emissions in the inventory – are calculated along linear road 
sections where the traffic properties at a given time are homogeneous (driving cycle, average speed). As for 
passenger vehicles, the flow of traffic is derived from the travel matrices of the assignment module. From a 
quantitative point of view, emission factors depending on traffic characteristics are applied to each road section to 
obtain quantities of pollutants emitted into the atmosphere per unit of time. In literature, there are three main 10 
databases that offer exhaust emission factors. These are HBEFA (Keller et al., 2017), COPERT (Ntziachristos et 
al., 2009) and MOBILE6 (US EPA, 2003). They differ to the extent that some rely on instantaneous speeds, while 
others consider average driving speeds, or apply to specific driving cycles such as standard highway traffic. The 
methodology we developed for the emissions module VULCAN is based on the EEA recommendations, that is, it 
uses COPERT’s emission factors based on the average speed of a vehicle during a standard driving cycle (see 15 
figure 9.b, c, d). In order to be exhaustive in the counting of traffic-related emissions, we have added mechanic 
particle emissions from different forms of friction and abrasion during driving, as well as VOC evaporation from 
vehicle tanks.  
 
One critical step in the road transport emissions modeling process is to determine the composition of the vehicle 20 
fleet, which can be derived from national composition data as an exogenous data. In the assignment module, the 
affectation of specific emission factors depends on the fleet properties (age, cylinder, type of fuel). In VULCAN, 
the agent car properties are defined using a conditional probability law. One second important step is the addition 
of cold start emissions.  This allows to take into account the effect of over-emission resulting from the poor 
performance of a vehicle starting and then running with a low-temperature engine. These supplementary emissions 25 
are also calculated from the EEA methodology (European Environment Agency, 2013).  
 
Then, to obtain total exhaust emissions, VULCAN first calculates hot emissions factors for the stable engine 
regimes:  
 30 
𝐸B¥� = 	𝑁	×	𝑀	×	𝜀B¥�    (27) 
 
where N is the number of car on a link, M is the length of the link and 	𝜀B¥�is the emission factor. 
 
Second, Vulcan calculates cold start emissions using an over-emission factor applied to a fraction of the distance 35 
traveled by each vehicle. This factor can be defined as 
 

𝐸�¥�e = 	𝛽	×	𝑁	×	𝑀	×	𝜀B¥�	× 	𝜀Ç¬©�
7¬§

− 1  (28) 

 
where ß is the mean fraction of the total distance that is traveled with a cold engine,  and 𝜀Ç¬©�

7¬§
 the ratio cold/hot.  40 

The EEA offers several levels of refinement of calculations, called Tier, the use of which depends on the 
information available at the input of the calculation. Tier 1 methods are based on a simple linear relationship 
between activity data and emission factors, representing typical or averaged process conditions, which tend to be 
technology independent. More advanced Tier 2 methods are available for key categories, allowing in particular to 
apply country-specific emission factors that rely on process conditions, fuel qualities or abatement technologies 45 
(European Environment Agency, 2013). OLYMPUS uses each time the highest level of detail accessible. All 
emissions are then computed as follow: 
 
𝐸��hf	� = 	𝑁	×	𝑀	×	𝜀��hf	�   (29) 
 50 
where M is the number of travelled kilometers. 
 
For instance, the calculation of LCV, HDV and 2-wheels emissions is based on the EEA tier 2 method. This 
methodology is used because of the excessive uncertainty on the fret fleet. The number of vehicle N is generated 
by HERMES using standard ratios of fleet composition. The emissions are calculated for CORINAIR pollutants 55 
(NOx, VOCs, PM) and for CO2. 
 
As mentioned above, emissions related to tire and brake wear are added to exhaust emissions, according to the 
two  following equations (European Environment Agency, 2013): 
 60 
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𝐸��fh = 	𝑁	×	𝑀	×	𝜀�ÈÐ	×	𝑓D	×	𝑆D(𝑉)  (30) 5 
𝐸¶h�f = 	𝑁	×	𝑀	×	𝜀�ÈÐ	×	𝑓D	   (31) 
where  
𝜀�ÈÐ  is the Total Suspended Particle (TSP) mass emission factor for vehicles in category j [g/km], 𝑓D	 is the mass 
fraction of TSP that can be attributed to particle size of class i and 𝑆D(𝑉) is the correction factor for a mean vehicle 
travelling at speed V.  10 
 
Finally, the VULCAN module considers gasoline evaporation, using an aggregated still based on (European 
Environment Agency, 2013) :  
 
𝐸hî�� = 	 𝑁	×	𝜀hî��	×	365,  (32) 15 

where  𝜀hî��  is the evaporation emission factor depending on ambient temperature.  

 

6.2 Building emissions 

Building emissions are based on the EEA guidebook for small combustion emissions (European Environment 
Agency, 2013). This part of the VULCAN modules considers emissions from residential heating (fireplace, stoves, 20 
cookers, small boilers), as well as institutional and commercial heating. Thus, small combustion emissions from 
the agricultural sector are not considered. 
 
The calculation of residential and tertiary emissions is based on the EEA methodology and the emissions factors 
a based on (Pfeiffer et al., 2000) and (Kubica et al., 2007): 25 
 
𝐸¾¿��e�6d = 	 (𝜀ï¿h�	ï¿h� ×	𝐸𝑁�¥6D ℎℎ )	 (33)  
 
It is important to note that the composition and the age of the fleet are two crucial parameters affecting building 
emissions. It has been found that improvement of combustion technologies has a massive impact on pollutant 30 
emissions over the years. However, due to a lack of information in literature, these parameters remain difficult to 
precisely estimate. For these reasons, when applying OLYMPUS on a territory, the hypotheses that we will be 
able to propose for the partition and the spatial distribution of the heating system technologies will be a determining 
point of the realism of the simulation.  

7 Application to the greater Paris  35 

The OLYMPUS model was first implemented on the Paris region. This choice is explained by the fact that the Ile-
de-France region is critically exposed to urban spread, anthropogenic pollutant release and climate change, and 
that all the challenges of sustainable development are at stake. Undeniably, the Paris region is based on a large 
megacity urban structure, with high density of housing and an expanding peripheral urban area, clearly posing the 
problem of mobility, traffic congestion and modal share. Moreover, the quality and availability of the input data 40 
make it possible to ensure robustness and reliability to the simulations undertaken. The choice of input data, 
working hypotheses and configurations selected for the OLYMPUS platform are presented below. The results 
from the emission calculations are then discussed. 

7.1 Configuration 

The simulations were carried out in 2009 due to an important database for this year (surveys, censuses, 45 
inventories). The simulation domain is the region Ile de France (Greater Paris). It is a monocentric urban area with 
a population density of 21,000 inhabitants / km² in the city center, and a decreasing density of the inner suburb 
and the outer suburb which are predominantly rural (Figure 10). 
The population of the territory is more than 11 million inhabitants. In terms of transport infrastructure, Paris is the 
city with the best public transport network. Individual mobility is 3.87 trips per person per day on average, with 50 
41 million trips being completed each day in the region. The majority of travel does not include trips to the city 
center(70%): the majority of trips in Ile-de-France are short (4.4 km on average) and close to home. 
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The computing space unit used in OLYMPUS is the TAZ. Here, it is derived from the French National Institute 5 
of Statistics (INSEE). INSEE has set up a specific division of the territory called IRIS which includes a large 
number of inhabitants. For our domain, this choice leads to the constitution of 1300 TAZ. Figure 11 illustrates the 
IRIS border definition used by OLYMPUS.  
Modeling anthropogenic emissions from the combustion of individuals requires a large database whose main 
parameters and their sources are described in Table 1. 10 
To generate the synthetic population in GAIA, we have used aggregated data from the city census, mainly derived 
from INSEE. They include the distribution of the population on the territory by age and sex, the number of 
households by IRIS and the average distribution of households by type of households (alone, couples, family, 
single-parent family). Mobility calculations in MOIRAI rely on several types of data, mainly surveys or national 
statistical databases. First, the public transport accessibility of the domain was carried out on the basis of the 15 
density of public transport networks as provided by the regional transportation agency STIF. As for the 
attractiveness of the city subareas, the generation of attractive WORK zones is established from INSEE census 
data providing the number of jobs per municipality. The average distance at which agents can be lured by a 
professional activity is then derived from the city's overall transportation survey (STIF, 2012). The total mobility 
of the agents is also conditioned by the total number of trips in a day, which is weighted according to the number 20 
of agent’s priorities. Here, the mean daily number of trips was derived from local surveys, and we hypothesized 
that trips other than those related to occupational mobility have the same average distance, which is not the case 
in reality. For the category OTHER, the interest of agents for a given activity results from two main parameters: 
the number of households in the immediate vicinity of an activity, and the estimated average travel distance to 
reach this activity. Once these values determined, the determining parameter for the realization of the activity in 25 
THEMIS will be the estimated travel duration inside the Paris region. Here, this parameter was derived from the 
calibration of the THEMIS module through an online application based on GTFS data from all regional transport 
agencies. It allows the constitution of a matrix of average transport times between the different classes of urbanized 
areas (UTAI). In the end, the combination of the transport network data and population density allows the 
calculation of the accessibility of any activity area. 30 
The vehicle fleet used in HERMES dates back to 2009 and is based on the (Carteret et al., 2015) survey. It includes 
passenger cars, LCVs and HDVs. This study is based on video observation to characterize a fleet of vehicles and 
fleets are compared to the global transport survey. The regional fleet of stoves and fireplaces was not estimated, 
so it was not included. We hypothesized here that individual heating modes, including wood heating, were mainly 
from individual dwellings. 35 
The energy demand on the territory was estimated from ARENE (Environmental and New Energies Regional 
Agency) survey data providing the unit consumption of households in Ile de France, but also from information on 
the average surface area of each household's dwelling, by type of household and as a function of the living area, 
as provided by CEREN (Center of Economic Research on Energy). The consumption modeling of the tertiary 
sector was carried out on the basis of annual consumption per employee of the tertiary sector. (CEREN, 2015) 40 

7.2 Results and discussion 

Figure 11 shows the results of the modeling of the synthetic population, obtained by running probability functions 
from aggregated census data. It also shows that we obtain a realistic representation of household density variations 
in the territory. With regard to the characteristics of the population (Figure 11), we note that OLYMPUS faithfully 
grasps the age distribution of the inhabitants of the Greater Paris, compared with the INSEE census data. However, 45 
it should be noted that OLYMPUS underestimates the senior population by about a factor of 2 - or even more for 
the last age group of the agents - and underestimates the infant population by 24%. However, these are age groups 
that are associated with low mobility, and with regard to the older age group, it accounts for a small share of total 
agents. Finally, the gender parity and the employment rate correspond to the census population. And these two 
parameters are perfectly equal because they were taken as constraints. Based on the low percentage distribution 50 
error of the working population, we consider that the model generates an acceptable synthetic population for 
transport modeling. The other attributes of the agents also correspond with the forcing data, including the gender 
distribution, the unemployment rate, the distribution of the type of household and the average household size. 
Because OLYMPUS relies on Bayesian statistics to generate a synthetic population, it is necessary - to get results 
close to reality - to have a large database which offers specific information on the distribution of the characteristics 55 
of the agents of the population as a starting point. Thus, thanks to the transcription of stochastic variables, the 
synthetic population has great similarities with the population studied. Nevertheless, this approach produces 
limited variability in socio-economic parameters within the distribution, offering a simulated population rather 
close to the average characteristics of the actual population. In this simulation, we limited ourselves to the use of 
a 3-level UDI and the division of TAZ into 1300 zones. It will be interesting to test the sensitivity of the distribution 60 
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of characters in the population to the increase in spatial variability and to the use of a larger number of indices and 5 
more of TAZ. 
 
Agent mobility modeling was carried out using home-work origin-destination (OD) trips matrices generated by 
MORAI, on the basis of surveys employment data in the Greater Paris.  
Figures 12.a, b are illustrations of the mobility of the synthetic population from OLYMPUS. Figures 12.b represent 10 
the saturation of the road network in terms of volume over capacities (VOC). The network in the city center and 
in the inner suburbs has an important VOC that is related to the monocentric nature of the megacity. This centrality 
of mobility is also noticed in figure 12.a, which represents the trajectories of the territory's movements with a 
strong orientation towards the heart of the megacity.  
This result was compared with the mobility indicators from transport surveys. Table 2 shows the comparison of 15 
simulated and survey-based data on the average number and length of trips per day. The simulated data is very 
realistic, with only a 4% difference for the total number of trips per day and per agent in Ile-de-France, and a 6% 
overestimation for the average trip length, compared with average transport survey values. The total number of 
trips and the transportation modes are very close to reality. We observe here the ability of the model to faithfully 
reproduce the distribution of the regional displacement demand. 20 
 
Figure 12.c presents a map of the energy demand simulated over the Greater Paris. The results show a fairly logical 
positive dependence to total population, with a maximum demand in the center of the agglomeration. The final 
energy consumption the greater Paris is 303 TWh in 2009 according to (ARENE, 2013). And the residential and 
tertiary sector represents more than 50% of these consumptions (including transport energy demand). The 25 
modeling of the regional energy demand (HESTIA) is quite satisfactory, the difference observed compared to the 
energy demand of the region is + 9.6%.  
 
Emission modeling from both road transport and building heating was carried out by calculating linear and surface 
emissions of atmospheric pollutants and greenhouse gases for each road section and consumption unit, followed 30 
by spatialization on the regular grid. The results, illustrated in Figure 12.d for nitrogen oxides (NOx) – a family of 
gaseous species emitted during combustion processes, show a very good coherence with the emitting structure in 
Île-de-France (major roads, types and density of housing by zone). Total OLYMPUS emissions are then compared 
to 2 reference emission inventories: that of the air quality network AIRPARIF, and that of the European network 
EMEP. For this purpose, for each inventory, we extracted the activity sectors corresponding to the emissions 35 
calculated by OLYMPUS. The comparison is presented in the form of histograms in Figure 13, for NOx and for 2 
size sections of particulate matter: PM2.5 and PM10. It should be noted that their methods of computing the emissions 
differ: AIRPARIF develops bottom-up approaches from local data gathering, while EMEP inventories arise from 
national emission totals per species, that are spatially disaggregated using top-down approaches. Furthermore, the 
comparison with the EMEP inventory cannot be carried out in detail due to the lack of information on sub-sectors 40 
of activity in the EMEP data.  
 
OLYMPUS emissions, although slightly lower than AIRPARIF emissions, present, for each pollutant, total values 
that are very satisfactory and speciation by activity (or vehicle) that reproduces the variability of the emissions 
calculated by AIRPARIF. The only sector that falls outside this rule is residential combustion with a factor 2 of 45 
underestimation of the value of the AIRPARIF inventory for PM10, but it is recalled that could not rely on local 
data and equipment technology is a major determinant of particulate emissions related to heating.  
 
 
For nitrogen oxides (NOx) and the particulate matter (PM2.5 and PM10), the differences with the regional inventory 50 
are approximately 20% for road transport. Moreover, AIRPARIF has its own residential heating modeling 
hypotheses including emission factories that do not rely on local data as well as the fleet of chimneys, stoves, etc. 
The relationships between the sub-sectors are very similar between OLYMPUS and the AIRPARIF inventory. 
The discrepancies with the EMEP inventory are greater, which can be explained by the fact that the EMEP 
approach is top-down.  55 
 
The differences observed with AIRPARIF estimates of road traffic emissions are approximately 20% in most 
cases. Previous studies (Timmermans et al., 2013) have estimated that this corresponds to the expected gap 
between inventories operating on different modeling assumptions, whether it is the choices on the cold start 
fraction, the fuel evaporation emissions modelling results from an aggregated methodology and especially the 60 
differences in the composition of the engine fleet. this makes the uncertainty on these emissions important. Based 
on these considerations, the estimate of emissions by OLYMPUS does not present a discrepancy with the 
AIRPARIF estimates that could give rise to fears of bias in the procedure. Nevertheless, from the quantitative 
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point of view, there remains a part of the total road traffic which is poorly estimated by OLYMPUS, since the 5 
model calculates the transport of goods on the basis of the track occupancy rates and does not take into account 
the interregional mobility, the city being considered here as a closed system. This largely explains the 
underestimation of traffic at the borders of the territory and in the most remote areas of the urban center. In 
addition, the issue of congestion is one that should not be overlooked in this type of model, because it affects the 
decision of the agents and it contributes to an increase in emissions. At present, congestion is handled by the 10 
representation of speed classes on the main axes, but a more dynamic management of this process is desirable, for 
example by establishing an iterative process between congestion and choice of agents, and by the refinement of 
the representation of the speed according to the rate of occupation of the tracks. This is where the next 
developments of the platform will focus. 
To go further in analyzing the results of OLYMPUS, we must consider the question of the choice of agents. 15 
Mobility modeling is based primarily on the theory of random utility in which each agent in the synthetic 
population is considered to make rational choices to select their mode of transport. This is a notion used by 
economists that obviously has several limitations. Principally, because imposing a complete rationality of 
decisions requires that agents have full access to information in order to make the most rational decision, which is 
unrealistic. It is more likely that different agents will have access to partial and different sets of information when 20 
making decisions. Secondly, the time given to the agent to make his decision influences the final choice, which is 
not taken into account in this approach. Finally, the maximum utility of an action may not be the same for each 
person since it depends on the preferences and weights given to each of the various elements that compose the 
utility function. One must even consider that rationality is not the guide of all behaviors, which can sometimes 
result from a habit, an impulse, etc. However, numerous economic studies have shown that this approach allows 25 
reliable predictions of typical behaviors of people within a group. It would be interesting in this context to test the 
response of the agent’s mobility to the weighting of the utility function, or even to an increase of the variability of 
its expression. In the end, as for the number of total travels, the structure of the trips and the use of the modes of 
transport, the simulated results are quite close to reality, which validates the representation in OLYMPUS of the 
average number of trips by agent, as well as the division of areas into attractiveness classes and the use of the 30 
utility function for modal choices.  
However, it would be interesting to test the implementation of additional attractiveness classes that may change 
the spatial distribution of non-commuting mobility. In addition, the sequencing of activities that influence the 
temporal variability of activities is a parameter easily perfectible via the addition of a specific schedule according 
to the characteristics of the agents of the synthetic population. 35 
 
The emissions modeled by OLYMPUS are underestimated for the residential and tertiary sector. OLYMPUS 
overestimates energy consumption, which may explain the model's pollutant emissions for combustion in the 
residential and tertiary sectors. For the residential and tertiary sectors, there is no precise survey about combustion 
technologies. This point explains the very large variability of the estimates of combustion emissions in the 40 
emission inventories. Thus, when we compare the EMEP and AIRPARIF estimates, their differences are of the 
same magnitude as the one we have with AIRPARIF. Our results are therefore in a range of values consistent with 
the estimates of the reference inventories.  
 
Thus, comparison with other inventories shows us that most of the differences between our calculations and the 45 
reference inventories are of an order of magnitude consistent with the use of different working hypotheses, on 
parameters insufficiently constrained by surveys or censuses. Comparing results with existing databases validates 
the ability of the OLYMPUS platform to produce combustion and road traffic emissions from a population’s 
activity. After evaluation, and considering the main improvements to come such as freight transport and 
congestion, our modeling approach appears relevant for carrying out impact analyzes of transport and energy 50 
policies in a given territory. 

8 Conclusions and perspectives  

The OLYMPUS modeling platform has been developed to meet the need for the development of a tool that links 
the urban diagnostics provided by the different disciplinary models, in order to produce analyses of the effects of 
urban policies on pollutant emissions, air quality and population exposure. OLYMPUS is a model providing 55 
emissions from road transport and energy consumption in the buildings by simulating the activities of a population. 
It is based on the description of a synthetic population made of agents, with their own characteristics and socio-
economic parameters, and it was built from state-of-the-art algorithms and methods for determining urban 
mobility. In particular, it relies on the production of utility functions to determine the activity of agents within the 
territory. It was designed to use  60 
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The results obtained with this platform show a quite good understanding of the emission resulting from individual 5 
and collective activities in the Paris region, though we had to make rude approximations concerning congestion, 
the transport of goods and the inter-regional mobility. The lack of constraint data on heating systems also induces 
uncertainty in the combustion emissions from the residential sector. Improvements on these issues have to be 
considered in future work. 
Refinements could also be implemented in the representation of the choices of the agents. It would be interesting, 10 
subsequently, to introduce additional socio-economic segregation parameters (e.g. household income) and their 
impact on mobility choices. This could allow us to highlight social discrimination in our emission analysis. It may 
also be interesting to set up feedback loops between the modules of OLYMPUS in order to simulate their 
interactions and to develop a multi-agent model. For instance, we could couple the discrete choice module with 
the displacement assignment module in order to make a feedback to integrate a realistic network congestion into 15 
the modal choice. One of our main perspective will also be to implement the model on other cities, so that we can 
test the transposability of our results, and have a broader vision of decision support in urban planning.  
 
Finally, because it relies on the evaluation of pollutant emissions from the activity of its synthetic population, in 
connection with the nature and the functioning of the simulated territory, OLYMPUS can produce diagnoses of 20 
durability for differentiated situations: widespread cities, compact cities, cities oriented along transport corridors, 
etc. In this framework, the question of the realistic nature of the input data is no longer relevant, and OLYMPUS 
can produce innovative results on the emissions of pollutants and greenhouse gases as well as on the levers of 
energy consumption (urban development, behavior and awareness of populations, public transport offer, etc). This 
is a very big step forward in the area of urban decision support. 25 
 
Code availability  
OLYMPUS is published as an integrated model of pollutant and greenhouse gas emissions. The source code can 
be obtained from the LISA website at http://www.lisa.u-pec.fr/~aelessa/OLP or upon request to the authors. The 
version presented here corresponds to OLYMPUS v1.0. Some improvements will be made and OLYMPUS 1.0 30 
will be updated for the latest version of the code. 
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Appendix A: Nomenclature 
 
ABTD Activity-based travel demand  
GAIA Synthetic population generator module 40 
GIS Geographic information system  
HBT Home-Based Tour  
HDV Heavy duty vehicle 
HERMES Trip assignment module  
HESTIA Buildings energy demand module  45 
LCV Light commercial vehicle 
MHBT Multiple Home-Based Tour 
MOIRAI Population agent mobility generator module  
NHBT Non-Home-Based Tour  
OD Origin-Destination 50 
OLYMPUS Integrated emissions model  
PC Passenger car 
PMF Probability Mass Functions 
TAZ travel analysis zones  
THEMIS Activity based travel demand preprocessing module  55 
UDI  Urban density index 
UTAI Urban Transport Accessibility Index 
VULCAN Emissions module 
 
  60 
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Figure 1: Flow chart showing the OLYMPUS emissions operating system, as well as its main modules (a) The 
synthetic population generation module (GAIA) (b) The generator of the transport time matrix, transportation 
accessibility indices and attractiveness of areas (THEMIS) (c) The transport demand module based on the activity 
of the synthetic population, and the modal choice in terms of transport (MOIRAI) (d) The module for assigning 
the travel demand on the road network (HERMES) (e) The module for the generation of energy demand at the 
regional level (f) The module for the calculation of greenhouse gases and air pollutant emissions based on emission 
factors. 
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Figure 2: (a) synthetic population generator GAIA model operating flow chart. (b)  Schematic representation of 
the urban density index (IDU). (c)  Example of the household size probability distribution according to a truncated 
Poisson distribution. (d) Example of a representation of the distribution of the probability of mass function (PMF) 
of the age of a living agent alone. 

 

 
Figure 3: (a) The transport time matrix generator, transportation accessibility indices in common and 
attractiveness of zones of displacements (THEMIS) flow diagram. (b) Schematic representation of UTAI. (c) 
Schematic representation of the attractiveness of an activity towards an individual as a function of distance. (d) 
Example of isochronous transit curves from the center of Paris 
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Figure 4: (a) The transport demand module MOIRAI operating flow diagram. (b) Representation of a circuit of 
activities of an agent of the synthetic population. (c) Representation of the timetable of an agent of the synthetic 
population. (d) representation of the probability of favoring a mode of transport according to the cost of transport 
time 

 
Figure 5: The transport demand module MOIRAI activities circuit based on agent priorities and daily number of 
trips (p) 
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Figure 6: Distribution of the activities start time and individual time spent on an activity   

 
Figure 7: (a) operating diagram of the assignment of the transport demand on road network (HERMES). (b) 
representation of the calculation of the shortest path based on the speeds of road sections. (c) Speed flow curve of 
the MOIRAI module based on 3 levels of road saturation 
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Figure 8: (a) Energy demand at the regional level generator (HESTIA) flow diagram, (b) Example of dwelling 
size distribution, (c) probability mass function of the type of energy consumed for different types of dwellings. 

 

 

Figure 9: (a) Greenhouse gases and air pollutant emissions module (VULCAN) flow diagram, (b), (c), (d) 
represent NOx, CO and VOC emissions factors from diesel and gasoline passenger cars. 
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Figure 10: (a) Representation of the Ile de France region (Greater Paris) and the land use.  (b) Representation of 
the Ile de France subdivision. 

 
Figure 11:  TAZ subdivision and Urban density index(UDI) of the greater Paris. 
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Figure 12: (a) representation of all origin-destination flows generated by MOIRAI motion request module. (b) 
Representation of the daily road traffic in the Greater Paris in terms of volume over capacity (VOC), (d) Nitrogen 
oxide emissions in Ile de France from road transport and residential / tertiary sector (OLYMPUS), (e) Focus on 
emissions from road transport, (f) Focus on emissions from the residential / tertiary sector. 

 
Figure 13: Emissions comparison with local and regional inventories (a) nitrogen oxides, (b) particulate matter 
with a diameter of 10 μm or less and (c) fine particles with a diameter of 2.5 μm or less. 

 
 
 

Module Inputs Sources Description 
    

Synthetic population    
 Number of household, 

household sex, age, 
Employment rate, household 

density 

INSEE 
 

These data are mainly 
derived from the census of 

the regional population 

Travel demand 
preprocessor) 

   

 Transit stations Ile de France These databases are 
spatialized in GIS format. 

 Job center INSEE  
Activity based travel 

demand  
   

 Number of daily trips STIF, DRIEA These data are mainly 
derived from surveys,  Mean transit travel time STIF 
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 Car cost  including the Global 
Transport Survey (EGT), the 

household-displacement 
survey (EMD), but also 

national statistics 

 Public transportation ticket 
price 

OMNIL 
 

    
Road assignment     

 Road network LVMT The main road network 
    

Building energy demand     
 Energy mix ARENE Greater Paris regional energy 

agency 
 Energy use per m2 CEREN surveys data 
    

Building and transport 
emissions  

   

 Car fleet Carteret et al., 
2015  

Video fleet observation 
studies 

    
Table 1: OLYMPUS parametrization for the Greater Paris simulation 

 
 

 OLYMPUS OMNIL RD 
Average 

number of trips 
per day 

4.05 3.87 4.6% 

Average length 
of a trip(km) 

4.7 4.4 6.9% 

Total number of 
trips (millions) 

41 41 1% 

Motorized 
individual trips 

40.4% 39.5% + 0.9% 

walking, cycling 41.9% 40.3% + 1.6% 
Trips by public 
transportation 

17.7% 20.1% -2.4% 

 
Table 2: Comparison of mobility with global transport surveys. 
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